Search results for "Asymptotic normality"

showing 10 items of 10 documents

Separation of uncorrelated stationary time series using autocovariance matrices

2014

Blind source separation (BSS) is a signal processing tool, which is widely used in various fields. Examples include biomedical signal separation, brain imaging and economic time series applications. In BSS, one assumes that the observed $p$ time series are linear combinations of $p$ latent uncorrelated weakly stationary time series. The aim is then to find an estimate for an unmixing matrix, which transforms the observed time series back to uncorrelated latent time series. In SOBI (Second Order Blind Identification) joint diagonalization of the covariance matrix and autocovariance matrices with several lags is used to estimate the unmixing matrix. The rows of an unmixing matrix can be deriv…

62H05 62H10Asymptotic Normality ; Blind Source Separation ; Joint Diagonalization ; Linear Process ; SobiFOS: MathematicsMathematics - Statistics TheoryStatistics Theory (math.ST)
researchProduct

Topology-based goodness-of-fit tests for sliced spatial data

2023

In materials science and many other application domains, 3D information can often only be extrapolated by taking 2D slices. In topological data analysis, persistence vineyards have emerged as a powerful tool to take into account topological features stretching over several slices. In the present paper, we illustrate how persistence vineyards can be used to design rigorous statistical hypothesis tests for 3D microstructure models based on data from 2D slices. More precisely, by establishing the asymptotic normality of suitable longitudinal and cross-sectional summary statistics, we devise goodness-of-fit tests that become asymptotically exact in large sampling windows. We illustrate the test…

Computational Geometry (cs.CG)FOS: Computer and information sciencesStatistics and ProbabilityGoodness-of-fit testsApplied MathematicsTopological data analysisPersistence diagramMathematics - Statistics TheoryStatistics Theory (math.ST)VineyardsMaterials scienceComputational MathematicsComputational Theory and Mathematics60F05Topological data analysis Persistence diagram Materials science Vineyards Goodness-of-fit tests Asymptotic normalityFOS: MathematicsAlgebraic Topology (math.AT)Computer Science - Computational GeometryAsymptotic normalityMathematics - Algebraic TopologyComputational Statistics & Data Analysis
researchProduct

Local Asymptotic Normality for Shape and Periodicity in the Drift of a Time Inhomogeneous Diffusion

2017

We consider a one-dimensional diffusion whose drift contains a deterministic periodic signal with unknown periodicity $T$ and carrying some unknown $d$-dimensional shape parameter $\theta$. We prove Local Asymptotic Normality (LAN) jointly in $\theta$ and $T$ for the statistical experiment arising from continuous observation of this diffusion. The local scale turns out to be $n^{-1/2}$ for the shape parameter and $n^{-3/2}$ for the periodicity which generalizes known results about LAN when either $\theta$ or $T$ is assumed to be known.

Statistics and ProbabilityLocal asymptotic normalityMathematical analysisLocal scale62F12 60J60020206 networking & telecommunicationsMathematics - Statistics Theory02 engineering and technologyStatistics Theory (math.ST)01 natural sciencesShape parameterPeriodic function010104 statistics & probability0202 electrical engineering electronic engineering information engineeringFOS: Mathematics0101 mathematicsDiffusion (business)Mathematics
researchProduct

Recursive estimation of the conditional geometric median in Hilbert spaces

2012

International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…

Statistics and ProbabilityMallows-Wasserstein distanceRobbins-Monroasymptotic normalityCLTcentral limit theoremAsymptotic distributionMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMallows–Wasserstein distanceonline data010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F05FOS: MathematicsApplied mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematics62L20MathematicsaveragingSequential estimation010102 general mathematicsEstimatorRobbins–MonroConditional probability distribution[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianstochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]robust estimatorRate of convergenceConvergence of random variablesStochastic gradient.kernel regressionsequential estimationKernel regressionStatistics Probability and Uncertainty
researchProduct

A more efficient second order blind identification method for separation of uncorrelated stationary time series

2016

The classical second order source separation methods use approximate joint diagonalization of autocovariance matrices with several lags to estimate the unmixing matrix. Based on recent asymptotic results, we propose a novel unmixing matrix estimator which selects the best lag set from a finite set of candidate sets specified by the user. The theory is illustrated by a simulation study.

Statistics and ProbabilityMathematical optimizationaffine equivarianceminimum distance indexasymptotic normalityAsymptotic distributionlinear process01 natural sciencesSet (abstract data type)010104 statistics & probabilityMatrix (mathematics)SOBIComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION0502 economics and businessSource separationjoint diagonalization0101 mathematicsFinite set050205 econometrics Mathematicsta112Series (mathematics)05 social sciencesEstimatorAutocovarianceStatistics Probability and UncertaintyAlgorithmStatistics & Probability Letters
researchProduct

Affine-invariant rank tests for multivariate independence in independent component models

2016

We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent component analysis (ICA), we allow for the singular cases involving more than one Gaussian independent component. The proposed rank tests are based on componentwise signed ranks, à la Puri and Sen. Unlike the Puri and Sen tests, however, our tests (i) are affine-invariant and (ii) are, for adequately chosen scores, locally and asymptotically optimal (in the Le Cam sense) at prespecified densities. Asymptotic local powers and asymptotic relative efficiencies with respect to Wilks’…

Statistics and ProbabilityMultivariate statisticssingular information matricesRank (linear algebra)Gaussianuniform local asymptotic02 engineering and technology01 natural sciencesdistribution-free testsCombinatoricstests for multivariate independence010104 statistics & probabilitysymbols.namesakenormaalius0202 electrical engineering electronic engineering information engineeringApplied mathematics0101 mathematicsStatistique mathématiqueIndependence (probability theory)Parametric statisticsMathematicsDistribution-free testsuniform local asymptotic normalityNonparametric statistics020206 networking & telecommunicationsIndependent component analysisrank testsAsymptotically optimal algorithmsymbolsindependent component models62H1562G35Statistics Probability and UncertaintyUniform local asymptotic normality62G10
researchProduct

A more efficient second order blind identification method for separation of uncorrelated stationary time series

2016

The classical second order source separation methods use approximate joint diagonalization of autocovariance matrices with several lags to estimate the unmixing matrix. Based on recent asymptotic results, we propose a novel unmixing matrix estimator which selects the best lag set from a finite set of candidate sets specified by the user. The theory is illustrated by a simulation study. peerReviewed

affine equivarianceminimum distance indexSOBIasymptotic normalityjoint diagonalizationlinear process
researchProduct

Extracting Conditionally Heteroskedastic Components using Independent Component Analysis

2020

In the independent component model, the multivariate data are assumed to be a mixture of mutually independent latent components. The independent component analysis (ICA) then aims at estimating these latent components. In this article, we study an ICA method which combines the use of linear and quadratic autocorrelations to enable efficient estimation of various kinds of stationary time series. Statistical properties of the estimator are studied by finding its limiting distribution under general conditions, and the asymptotic variances are derived in the case of ARMA-GARCH model. We use the asymptotic results and a finite sample simulation study to compare different choices of a weight coef…

asymptotic normalityautocorrelationOriginal Articlesaikasarja-analyysiprincipal volatility componentARMA-GARCH processmonimuuttujamenetelmätblind source separationGARCH-mallit62m10ARMA‐GARCH processOriginal Articletilastolliset mallit60g10
researchProduct

KERNEL ESTIMATION OF THE TRANSITION DENSITY IN BIFURCATING MARKOV CHAINS

2023

We study the kernel estimator of the transition density of bifurcating Markov chains. Under some ergodic and regularity properties, we prove that this estimator is consistent and asymptotically normal. Next, in the numerical studies, we propose two data-driven methods to choose the bandwidth parameters. These methods are based on the so-called two bandwidths approach.

cross validation methodKernel estimatorrule of thumb type methodasymptotic normalitybinary trees[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]bifurcating Markov chains[STAT] Statistics [stat]
researchProduct

Model selection using limiting distributions of second-order blind source separation algorithms

2015

Signals, recorded over time, are often observed as mixtures of multiple source signals. To extract relevant information from such measurements one needs to determine the mixing coefficients. In case of weakly stationary time series with uncorrelated source signals, this separation can be achieved by jointly diagonalizing sample autocovariances at different lags, and several algorithms address this task. Often the mixing estimates contain close-to-zero entries and one wants to decide whether the corresponding source signals have a relevant impact on the observations or not. To address this question of model selection we consider the recently published second-order blind identification proced…

ta112Series (mathematics)Estimation theoryModel selectionasymptotic normalitypattern identificationAsymptotic distributionInformation Criteriaoint diagonalization SOBI AsympBlind signal separationMatrix (mathematics)Control and Systems EngineeringSOBISignal Processingjoint diagonalizationComputer Vision and Pattern RecognitionElectrical and Electronic EngineeringAlgorithmSoftwareMixing (physics)MathematicsSignal Processing
researchProduct